Workshop:
To find the longitude with
Jupiter's satellites

The goal: How to measure the longitude according to Galileo's method? We are going to calculate the longitude of Oradea according to Greenwich's meridian.

Method with the software "Stellarium":

1) The angle of vision (FOV: field of view) is 0.24°. In the Location window choose the city of Oradea on May,7. Search what time it is when Io is behind Jupiter. (Search approximately 7 o'clock). Write it 7h....min. Search what time it is when the sun is at the south $\left(180^{\circ}\right)$. Write it (approximately at 12 o'clock), 12h.....min.
2) Now choose the town of Greenwich. Do the same experiment, what time is it when Io is behind Jupiter? Write it $7 \mathrm{~h} . . . \mathrm{min}$, is it the same?
At what time the sun is at the south. Write it ...h....min, is it the same?
3) Convert the hour in minutes:

- When Io is behind Jupiter at Oradeamin
- When Io is behind Jupiter at Greenwichmin
- When the sun is at the south at Oradea......min
- When the sun is at the south at Greenwichmin

4) Make the difference between the moment when the sun is in the south and where Io is behind Jupiter at Oradea. Write it \qquad min, we call this measure T_{1}.
Start again at Greenwich. Write itmin, we call this measure T_{2}.
5) Make this calculation: $T_{2}-T_{1}=$ \qquad $=\ldots . . \mathrm{min}$, we call this result T_{f}
6) The earth rotates $\left(360^{\circ}\right)$ around itself in 1436 min , so with a cross multiplication we can make this calculation: $\left(\mathrm{T}_{\mathrm{f}} * 360\right) / 1436=\ldots . .{ }^{\circ}$ So Oradea is at $\ldots . . .^{\circ}$ of longitude.
7) You can check this result with Google Earth.
